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SURVEY OF APPLICATION OF THE KOLMOGOROV-ARNOLD
NETWORKS TO TRANSPORTATION NETWORK INTERDICTION

GAMES

This paper is dedicated to the analysis of transportation network interdiction, which examines the mechanisms
by which an adversary with limited resources can disable or degrade connections within a network, as well as
the defender s response in rerouting flows to maintain system efficiency.

The evolution of interdiction methods is presented—from classical bilevel optimization approaches employing
mixed-integer programming, Benders decomposition, cutting-plane methods, and heuristics to contemporary

algorithms that leverage large-scale data analysis.

A classification of machine-learning methods for interdiction is provided, namely:
1. Reinforcement learning, which involves training agents through interaction with a simulated environment.
2. Adversarial and multi-agent learning, which employs self-play and online no-regret algorithms to

develop robust strategies.

3. Imitation learning and inverse reinforcement learning, which rely on analyzing demonstrations or

actual adversary trajectories.

4. Evolutionary algorithms combined with neural approximators, which offer scalable solutions at the

expense of strict theoretical guarantees.

Theoretical foundations of Kolmogorov—Arnold Networks (KANs) are revealed, showing how, based on

the universal approximation theorem, they approximate multivariate functions via a sequence of learned
univariate mappings. Initial applications of KANs in transportation tasks—such as traffic flow optimization and
power-grid state estimation—are analyzed, and the potential for modeling defender responses using a compact,

interpretable architecture is identified.

1t is determined that, for further advancement in this field, the following key challenges must be addressed.:

1. Embedding bilevel decision logic into differentiable models.

2. Handling graph-structured inputs without sacrificing approximation properties.

3. Generating representative, “adversarial” training datasets.

4. Developing rigorous evaluation protocols and determining performance bounds.

A research roadmap is proposed that integrates optimization and learning approaches, prioritizes
reproducibility on both synthetic and real datasets, and seeks to balance computational efficiency with
model transparency. This survey establishes a foundation for the development of effective and interpretable
interdiction strategies in transportation and other critical infrastructure networks.

Key words: transportation networks, network interdiction, Kolmogorov-Arnold networks, neural network
training, performance evaluation, comparative analysis, mathematical optimization.

Statement of the problem. Network interdic-
tion games model an attacker-defender scenario on
a network, where one agent attempts to disrupt or
block network routes while the other tries to main-
tain efficient connectivity. Formally, a network
(e.g., a road network or supply chain) is given on
which an operator (defender) seeks to perform an
optimally efficient action, such as sending flow,
finding the shortest path, or servicing demands. An
interdictor (attacker) moves first by incapacitating or
degrading some network elements (nodes or links)

within a limited budget of attacks [1]. Then the
operator routes flow or traffic in the damaged net-
work attempting to minimize the loss (e.g., finds the
quickest remaining route, or maximizes the through-
put that can still be delivered). This sequential play
defines a Stackelberg game: the attacker anticipates
the defender’s best response when choosing what to
attack [1]. Depending on the context, the defender’s
“action” can be passive (simply the outcome of an
optimization like shortest path) or active (e.g., allo-
cating defensive resources or fortifications before
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the attack, leading to a tri-level game [1], although
we focus on the bilevel case here).

These models have critical relevance in
logistics, as they help identify weak links in supply
chains and transportation networks and devise
strategies to improve network resilience [2]. In a
typical formulation (often a Stackelberg game), an
interdictor (leader) with limited resources chooses a
set of network arcs or nodes to disable or degrade.
Then, an evader (follower) finds its optimal path
through the remaining network [2]. The interdictor’s
goal is to maximize the cost or length of the
evader’s route (e.g., lengthening the shortest path)
while the evader seeks to minimize it, producing a
two-level optimization problem. Classic analysis
usually assumes perfect rationality and complete
information, but these assumptions are often
unrealistic in practice [3]. Moreover, solving such
interdiction problems is usually computationally
hard: even restricted versions (like selecting k
arcs to remove) are NP-hard, making exact solvers
impractical on large networks [2]. These challenges
have spurred research into Al agent training methods
that learn effective interdiction strategies through
simulations and theoretical models.

Analysis of recent research and publications.
Several comprehensive surveys have been pub-
lished on transportation network interdiction, includ-
ing Smith and Song (2020), who review a broad
range of bilevel optimization models and solution
techniques; Brown et al. (2019), which focuses on
mixed-integer programming and decomposition
methods; and Zhang and Li (2021), which examines
machine-learning—based heuristics. These works
systematically cover reinforcement learning, adver-
sarial/multi-agent frameworks, imitation learning,
and evolutionary or heuristic approaches, yet none
of them mention Kolmogorov—Arnold Networks
(KANSs) as a potential modeling paradigm. Conse-
quently, there is a gap in existing literature regard-
ing the application of KANs to network interdiction,
despite their ability to approximate complex multi-
variate defender-response functions via learned uni-
variate mappings.

Task statement. This survey aims to trace the
evolution of transportation network interdiction
methodologies — from classical bilevel optimization
techniques to modern Al-driven approaches — and to
identify open challenges hindering further progress.

The current study is focused on reinforcement
learning,  adversarial ~ (multi-agent)  learning,
imitation learning, and other relevant methodologies.
Specifically, the objectives are to:
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» Categorize existing interdiction approaches,
contrasting  operations-research methods  with
machine-learning frameworks, and summarize their
respective strengths and limitations.

* Highlight the theoretical foundations and
initial applications of Kolmogorov — Arnold
Networks (KANs) in related transportation domains.

* Identify critical research gaps, including
embedding bilevel decision logic into differentiable
models, handling graph-structured inputs
without losing approximation power, generating
representative adversarial training datasets, and
establishing rigorous evaluation protocols.

Propose a research roadmap that integrates
optimization and learning approaches, emphasizes
reproducibility on both synthetic and real-world
datasets, and balances computational efficiency with
model interpretability.

QOutline of the main material of the study.
Formulation of the problem

A rigorous mathematical formulation for the
network interdiction game is typically expressed
as a Stackelberg (leader-follower) bilevel optimi-
zation problem [6].

Consider a transportation network modeled as
a directed graph G = (¥, E) where V is the set of
nodes (vertices). £ is the set of arcs (edges), with
each arc (i,j)eE having associated parameters
(e.g., capacity, cost, or travel time).

An attacker aims to degrade the network by
interdicting (attacking/removing or partially
disabling) a subset of arcs, subject to resource or
budgetary constraints. The defender subsequently
routes traffic or flow optimally through the network
to minimize operational costs or maximize efficiency
given the interdicted network.

The attacker (leader)
interdiction decisions:

{l,if arc(i ,J )is interdicted (disabled ordegraded )
x; =

0,otherwise

chooses  binary

The defender (follower) chooses continuous
routing decisions:

Sy 2 O(ﬂowon arc(i,j)aﬁerinterdiction)

The attacker selects arcs to interdict to maximize
damage to the defender. Formally, the attacker
solves the following problem:

mfle(x,f* (x))

subject to interdiction budget constraints:

a
Z cjX; < B

(i,j)eE
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where:

1. Z(x,f* (x)) is the damage (loss) function
defined by the attacker (e.g., total increase in travel
time or total flow reduction), dependent upon the
defender’s optimal response f~ (x).

2. ¢; is the cost of interdicting arc (i,j) .

3. B is the attacker’s budget (limited resources
for attacks).

Follower’s Problem (Defender)

Given the interdicted arcs (decision x), the
defender solves an inner-level optimization problem,
typically to minimize their operational costs, or
equivalently, to maintain optimal network efficiency:

f (x) € argminC(f,x)
J
subject to network constraints: Flow conservation

at each node k e V\{s,t} (where s is source and t is
sink):

S fi- Y fy=0VkeV s,

(i,k)eE (k,j)eE

Capacity constraints
interdictions:

0<f,<c,(1-x;).V(i.j)eE

on arcs, adjusted for

where:

1. C(f,x) is the defender’s cost function,
typically given by total transportation costs or total
travel time.

2. ¢, is the original capacity of the arc (i, j)
before interdiction.

The complete bilevel Stackelberg interdiction

game formulation is expressed as:

maxZ(x,f* (x))
subject to:
Z cix; <B,x; € {O,l}
(i.j)eE
and

f(x)eargminC(f,x)

subject to:
1. Flow conservation:

Zfik— Z fkj=0,VkeV{s,t}

(i.k)eE (k.j)eE
2. Arc capacities (post-interdiction):

0<f,<c,(1-x;).V(i.j)eE

Interpretation

Leader (Attacker): Moves first and strategically
selects arcs to disrupt, considering how the follower
will optimally respond.

Follower (Defender): Moves second, optimally
redistributing traffic or flow on the network given
the damage caused by the leader.

Transportation systems provide many practical
cases of network interdiction games. Consider
a highway network where an attacker aims to
maximize congestion by disabling a few critical
interchanges while the traffic authority reroutes
vehicles to minimize total delay. This can be cast as
an interdiction game in which the attacker removes
network capacity and the defender solves a traffic
assignment or flow minimization problem [7].
Similar models appear in the analysis of terrorist
threats to transit systems, freight network resilience
against disruptions, and smuggler interception on
transportation corridors [3]. A common objective
for the interdictor is to inflict maximum damage
(e.g., maximize travel time or flow loss), while
the defender’s aim is typically to minimize that
damage — yielding a zero-sum or leader-follower
optimization framework [7].

Solving network interdiction problems optimally
is generally computationally hard. Even with
moderate network sizes, the bilevel formulation
becomes large and non-convex. Traditional methods
reformulate or relax the problem into single-level
models. For example, one can replace the defender’s
linear program (like a max flow) with its dual and
embed it into the attacker’s problem, resulting in a
single-level but still combinatorial formulation [8].
Exact algorithms often use cutting planes, branch-
and-bound, or Benders decomposition (row
generation) to search the attack space efficiently [8].
Despite these advances, the curse of dimensionality
remains: as networks grow or as the attacker’s
budget increases, the number of possible attack
combinations explodes. Smith and Song (2020) note
that modern research is pushing into interdiction
models with probabilistic and dynamic elements,
which further increase complexity [6]. In such
settings, exact solution methods can become
prohibitively slow, and even heuristic or MILP
solvers struggle to provide timely solutions [9].
This is problematic for transportation agencies that
have to analyze worst-case disruption scenarios or
identify vulnerabilities in large-scale networks (e.g.,
a national highway system).

Thus, exact solutions are challenging for large-
scale networks, motivating the development of
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advanced approximate solution techniques [10]
including potentially promising methods like
Kolmogorov-Arnold Networks.

Publication Selection

The identification and curation of relevant
literature constitute the initial phase of this
survey [4]. We combine an automated controlled
snowball-sampling procedure [5] with manual
screening and citation-network exploration to ensure
both breadth and relevance.

Inclusion and Exclusion Criteria

We defined explicit inclusion and exclusion
criteria for selecting publications to ensure a high-
quality and relevant literature base.

Inclusion Criteria: We focused on peer-reviewed
research articles (including conference papers and
journal articles) and credible systematic literature
reviews published roughly in the last 10 years
(2015-2025). We included studies explicitly
addressing the application of Al (e.g., machine
learning, deep learning, evolutionary algorithms,
knowledge-based systems) to software testing or
quality control. Also, we included older seminal
works if they were highly cited and foundational to
the field (to provide historical context or definitions).
We limited sources to English-language publications
from reputable venues in software engineering
and Al For tools or industry solutions, official
documentation or whitepapers (software manuals)
were considered if they provided technical details.

To assemble a focused yet comprehensive
body of work, we established explicit criteria.
We included peer-reviewed journal articles and
conference papers—published between 2010 and
2025-that directly address transportation network
interdiction or closely related topics (e.g., logistics,
supply-chain resilience). These works encompass
both classical optimization techniques, such as
bilevel programming, mixed-integer programming,
and decomposition algorithms, and modern
Al methods, including reinforcement learning,
graph neural networks, and Kolmogorov—Arnold
Networks. Additionally, we considered highly cited,
pre-2010 publications that introduced foundational
concepts in interdiction game theory or network
security. All included studies are in English and
originate from recognized operations-research
and Al venues. Conversely, we excluded papers
that discuss network flow or routing without an
interdiction component, focus solely on defender-
only optimization, or address Al system testing
rather than using AI for interdiction. Non-peer-
reviewed sources (e.g., blogs or opinion pieces)
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were omitted unless they provided critical
methodological details, and purely theoretical works
without computational or empirical evaluation were
likewise set aside.

Publication Selection Method

Our selection unfolded in three stages. First,
we performed keyword searches—using terms
such as “transportation network interdiction”,
“bilevel network games”, and “network interdiction
learning” — across Scopus, Web of Science, and
Google Scholar. An initial screening of titles and
abstracts yielded approximately fifty candidate
papers. Second, we applied the controlled
snowball-sampling method of Dobrovolskyi and
Keberle [5], tracing both forward and backward
citations to capture seminal works while avoiding
terminological drift; this refined our pool to about
thirty-five publications. Finally, we obtained
full texts (where available) and conducted a
detailed manual review, verifying each against
our inclusion/exclusion criteria, extracting key
methodological details—such as network models,
evaluation metrics, and principal findings—and
discarding those that failed to meet our standards.

Analysis of collected publications

Kolmogorov-Arnold Networks

Kolmogorov-Armold Networks are a novel class
of neural networks grounded in a 1957 theorem by
A.N. Kolmogorov (extended by V. Arnold), which
states that any continuous function of several
variables can be represented as a finite composition
of one-dimensional functions [11]. Traditional
neural networks achieve universal approximation
by layering fixed non-linear activations; in
contrast, KANs implement the Kolmogorov-
Arnold construction directly. Each hidden “layer”
in a KAN applies learnable transformations on
each input dimension rather than a fixed activation
across all neurons [12]. For example, instead of
a weight w, multiplying input x, KAN would
apply a learned spline function ij(xj) input
connection. These learned univariate functions serve
as customized activations that can adapt their shape
to the data. As a result, KANs can capture complex
nonlinear relationships with a compact architecture.

One immediate advantage of KANs is
flexibility. The network can mold its activation
functions to fit intricate patterns, which is
beneficial for highly nonlinear domains like
traffic flow or infrastructure failure cascades.
Another advantage is potential interpretability:
the learned activation functions on each edge can
be inspected and, in some cases, have been shown
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to correlate with meaningful physical relationships
[hollosi2024detection]. Indeed, KANs have been
used to rediscover mathematical or physical laws
from data, highlighting their ability to reveal
the structure behind the patterns they learn [12].
Furthermore, variants like Convolutional KANs
integrate spline-based activations into CNN
architectures to reduce parameter counts while
maintaining accuracy [12]. In image classification
tasks (e.g. MNIST), such convolutional KANs
matched traditional CNN performance using
fewer resources [12]. This efficiency is attributed
to KAN’s capacity to approximate functions
with fewer neurons by using richer neuron-
wise activations. KANs are particularly effective
at modeling high-dimensional datasets with
intricate  interdependencies. For example, in
hyperspectral image classification and time-series
forecasting, they have achieved leading results by
accurately representing both spatial and temporal
correlations [14]. All these traits suggest that KANs
could be well-suited to model the complexity of
transportation networks under attack, where system
behavior (e.g., total travel time, flow distribution)
is a highly nonlinear function of which components
are disrupted.

However, KANs are not universally superior
to conventional networks in every scenario.
A comprehensive empirical study by Bodner et al.
(2024) found that when controlling for model size
and FLOPs, standard MLPs still outperformed
KANs on most machine learning benchmarks
except those involving symbolic  function
representation [13]. These findings underline that
while KANs offer a powerful representational
framework, they also introduce new challenges.

Applying Kolmogorov-Arnold networks to
network interdiction is a cutting-edge idea that
has only begun to be explored. Because KANs
themselves have gained attention mainly in the past
few years, there are not that many direct studies on
using KANSs for interdiction games. Recent advances
along two parallel lines of inquiry provide valuable
guidance. The first involves employing machine-
learning methods—including neural networks—to
augment or even replace conventional solvers in
network interdiction tasks. The second focuses
on the successful deployment of KAN models
in a variety of transportation-focused problems.
Together, these developments imply that KANs may
be particularly well-suited to address the challenges
posed by interdiction games in transportation
networks.

KANs in Transportation and Network
Optimization
Initial deployments of KAN architectures

in transportation applications demonstrate their
effectiveness in  handling complex network
challenges, suggesting they may be well suited for
interdiction scenarios. A very recent example is the
use of KANs for traffic flow optimization. Zhang
et al. (2025) proposed a hybrid model combining
KANs with graph convolutional networks
(TrafficKAN-GCN) to optimize urban traffic signal
timings [9]. By embedding a KAN into a graph-
based architecture, they aimed to capture complex
nonlinear flow responses to control measures.
While this work is at the preprint stage, it reflects a
broader trend of integrating KANs into graph and
network problems. Indeed, KANs have also been
tested in power systems for state estimation, where
interpretability and accuracy are crucial [15]. In all
these cases, KANs provided an advantage when the
problem involved learning a complicated mapping
(e.g., from sensor readings or control actions to
outcomes) that classical models struggled with.

Bridging the Fronts: The convergence of
these research fronts — ML-assisted interdiction
and KAN-enabled transport models — points to a
strong opportunity at their intersection. We have
seen that neural approaches can handle large-
scale interdiction problems faster than traditional
methods [10], and that KANs can capture complex
system behaviors in transportation contexts with
high fidelity [12]. Therefore, it is anticipated that
applying Kolmogorov-Arnold networks to network
interdiction games in transportation will bring
significant advances. In the next section, we identify
these anticipated benefits in detail, discussing
how KAN’s characteristics align with the needs
of interdiction problems. We then analyze the
challenges that must be addressed to realize these
benefits.

Al-Based Approaches to Network Interdiction

Methods from machine learning and artificial
intelligence have been employed to overcome the
scalability and uncertainty challenges of classical
interdiction solvers. In the last decade, the literature
on Al-driven interdiction can be grouped into four
main categories:

Reinforcement Learning

Reinforcement learning frames interdiction as a
sequential decision-making process in a simulated
environment [2]. Recent studies model the shortest-
path interdiction problem as a Markov decision
process and train deep RL agents—often using
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pointer networks—to select edges to disable. These
agents learn policies that maximize a reward signal
(e.g., the evader’s path length), achieving near-
optimal interdiction sets on large instances where
mixed-integer solvers become intractable [16].

Adversarial and Multi-Agent Learning

Adversarial learning  approaches explicitly
account for the strategic interaction between
interdictor and evader. Online no-regret algorithms
update the defender’s strategy against adaptive
opponents, with provable sublinear regret bounds
even when the evader adjusts tactics over time. Self-
play RL schemes co-train attacker and defender
agents, driving both toward equilibrium policies that
generalize across network topologies [17].

Imitation and Inverse Reinforcement Learning

When demonstrations of expert or observed
behavior are available, imitation learning and
inverse RL can infer an opponent model. In one
dynamic local interdiction study, human-generated
evader trajectories were used to learn a reward
function via IRL; this model then informed the
interdictor’s policy, which was further refined online
through RL, yielding higher interdiction accuracy
than [18].

Evolutionary and Heuristic Methods with
Neural Approximators

Genetic algorithms and other population-based
heuristics have long been applied to interdiction,
identifying near-optimal link-removal sets on large
networks. More recently, graph neural networks
have been trained on MILP-derived solutions—
termed “Network Interdiction Goes Neural” — to
predict effective interdiction decisions in real time,
outperforming greedy heuristics and matching solver
quality at a fraction of the runtime [9].

By consolidating these paradigms into a single
overview, we highlight how Al techniques-ranging
from trial-and-error learning to expert modeling
and hybrid heuristics—provide scalable, adaptable
alternatives to exact optimization in network
interdiction contexts.

Gaps and challenges

Integrating Kolmogorov-Ammold networks into
network interdiction games is at its very beginning
stage. It raises unique issues at the intersection of
game theory, graph data, and deep learning.

e This survey has traced the evolution of trans-
portation network interdiction—from its origins in
bilevel optimization and mixed-integer program-
ming to the latest trends in data-driven and learning-
based methods. Classical solution techniques such
as Benders decomposition, cutting-plane algorithms,
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and heuristic search continue to provide rigorous
foundations and provable guarantees, yet they often
struggle with scalability on large, realistic networks.
In parallel, machine-learning paradigms—including
reinforcement learning, adversarial and multi-agent
frameworks, imitation and inverse reinforcement
learning, as well as evolutionary algorithms aug-
mented by neural approximators—have demonstrated
remarkable flexibility and speed, albeit sometimes at
the cost of formal optimality bounds.

A central theme of this review is the promise
of  Kolmogorov—Arnold  Networks  (KANs).
By approximating multivariate defender-response
functions via learned univariate mappings, KANs
offer a compact architecture with the potential for
greater interpretability than conventional deep-
learning models. Early applications in traffic flow
optimization and power-grid state estimation suggest
that KANs can capture complex nonlinear behaviors
in networked systems. Yet the direct application of
KANS to interdiction games remains nascent.

From our analysis, four key research challenges
emerge:

1. Bilevel Logic Embedding

2. Translating the sequential attacker—defender
structure into a differentiable learning paradigm,
without losing theoretical rigor.

3. Graph-Structured Input Handling

4. Extending KAN theory to accommodate
networks’ combinatorial topology, while preserving
universal approximation guarantees.

5. Adversarial and Diverse Data Generation

6. Designing training datasets that reflect
realistic, stochastic interdiction scenarios and
adversarial variations.

7. Evaluation Protocols and Performance

Guarantees

8. Developing standardized benchmarks,
reproducible evaluation procedures, and methods to
quantify approximation gaps or regret.

Addressing these challenges will require
concerted efforts across optimization theory, graph-
based learning, and robust machine-learning
methodology. We foresee that hybrid frameworks—
combining KAN-driven approximators with local
optimization refinements—could deliver both high
performance and verifiable guarantees. Moreover,
establishing open datasets and shared evaluation
platforms will be critical to drive reproducible

progress.
In summary, while classical and modern Al-based
methods each contribute valuable strengths,

integrating KANs into transportation interdiction
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promises a new balance between computational scalable, and reliable interdiction strategies
efficiency, modeling fidelity, and interpretability. As  applicable not only to road and logistics networks,
research advances along the identified directions, but also to other critical infrastructures such as
we expect to see the emergence of more transparent, power grids and communication systems.
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Maciunuk B.B., loopoBoiabcskuii I'A. 3SACTOCYBAHHS MEPEX
KOJIMOT'OPOBA-APHOJIBJIA JIO ITOP IHTEPIMIIII TPAHCIIOPTHUX MEPEXK

Cmamms npucesiuena ananizy iHmepouyii Mpancnopmuux mepedxic, wo nepeodavac O00CHioNCeHHs
MeXaHizmie, 3a 0ONOMO2OK AKUX NPOMUBHUK 13 OOMENCEHUMU Pecypcamu Modxce GUsooumu 3 iaody abo
noCaabMo8amuy 38 ’A3KU 6 MepedxCi, a MAaKONC pPeaxyilo 3aXUCHUKA, AKUL NepeHanpasnsc NOmoKu Ol
30epedicents eeKxmusHOCmi Cucmemu.

Y emammi poskpumo egontoyiro memodie inmepouyii — 8i0 KAACUYHUX OIBEPMUKANLHUX ONMUMIZAYIUHUX
nioxo0ig i3 3acMoCy8AHHIM 3MIUAHO20 YITOYUCETbHO20 NPOSPAMYBaHHs, dekomno3uyii bendepca, memodis
PO3PI3i6 ma espUCuK 00 CYyYACHUX ANOPUMMIB, WO CNUPAIOMbC HA AHANI3 BETUKUX 00CS2I8 OaHUX.

Posxkpumo kaacughikayiro memoodie mawuHHo20 HagyanHs 0 inmepouyii, a came:

1. Hasuanmus 3 niOKpinienHsm, saKe HAGYAE AeeHmi8 Yyepes3 3aEMOOTI0 3 IMIMOBAHUM cepedoguiyem,
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2. Ilpomuodiiine ma bazamo-azeHmHue HABYUAHHI, WO SUKOPUCTIOBYE HABUAHHS Hepes Py 3 CAMUM CO00t0
ma oHnauH-aneopummu o6e3 dcanio sk popmysanus cmadiibHux cmpameziil,

3. Imimayitine naguanms ma 360pomue HAGUAHHS 3 NIOKPINIEeHHAM, SKI 8UBYAIOMb NOBEOIHK) NPOMUBHUKA
HA OCHOBI OeMOHCmMPayitl abo peanbHux mpacKkmopii,

4. EsonmtoyitiHi aneopummu Yy HNOEOHAHHI 3 HEUPOHHUMU aNpPOKCUMAMOpPAMU, WO 3a0e3nedyoms
Macumabosanicmv piuleHb 3a paxyHOK I0CYMHOCMI CYBOPUX MEOPEMUYHUX 2APAHMIL.

Poskpumo meopemuuni 3acaou mepexc Konmoeoposa—Aprnonvoa (KAN), saxi na ocrosi yHieepcanvHOi
meopemu  anpoKCUMYIoOms — 6a2amosumipni - (yHKyii uepes NOCAIOOBHICMb  BUBUEHUX OOHOBUMIDHUX
8i000pasicensb, ma NPOAHANI308AHO IXHI NOYAMKOSI 3ACMOCY8AHHA 8 MPAHCHOPMHUX 3A80AHHAX (30Kpema
onmuMizayis OOPOIACHLO2O PYXy Ma OYIHKA CMAaHy enepeomepedic). Busnaueno mooicnusocmi sukopucmanms
KAN 0ns mooenrosarnns peakyii 3axucHuKa 6 KOMNAKMHIN ma iHmepnpemosaniil apximexmypi

3’s1c06ano, wo 05t nOOAILULO20 PO36UMK) OAHOL 2ANy3i HEOOXIOHO SUPTUWUMU MAK] KIIOYOGT GUKIIUKU

1. Boyoysamnns 6ieepmuKkaibHOi 102iKU 8 OUGEPeHYIL0BAHT MOOeL,

2. Obpobka epagh-cmpyxmyposanux exionux oanux o6e3z empamu anpoKCUMAyiltHux 61acmusocmell,

3. T'enepayis penpezenmamugnux, «npomMuoitiHux» Habopié 0anux Ol HAGUAHHS,

4. Po3pobka cmpozux npomoKoié OYiHKU ma U3HAYEHHS MeNHC NPOOYKMUBHOCMI.

3anpononosarno 00CcHioHUYbKY 00POIICHIO KAPMY, Wo NOEOHYE ONMUMI3AYIUHI Ul HABYANbHI NIOX00U, HAOAE
npiopumem Gi0MEOPIOBAHOCHI PE3YIbMAmMié Ha CUHMEMUYHUX | PealbHUuX 0aHUX ma npachue 30aiancysamu
00UUCTIIO8ANbHY edheKmUBHICIB I3 npo3opicmio moodenell. Lletl 021510 cmeoproe 0CHOBY 015 pO3pOOKU e(heKmUHUX
i 3po3yminux cmpamezitl inmepouyii 6 MpaAHCNOPMHUX MA THUWUX KDUMUYHO 8AINCIUBUX THOPACMPYKIMYDHUX
mepedicax.

Knrwouogi cnosa: mpancnopmui mepesici, inmepouxyis mepedic, mepedici Konmoeoposa—Apronvoa, naguanns
HEeUPOHHUX Mepedic, OYIHKA epheKxmueHoCcmi, NOPIGHALIbHUL AHALI3, MAMEMAMUYHA ONMUMI3AYIAL.
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