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SURVEY OF APPLICATION OF THE KOLMOGOROV-ARNOLD 
NETWORKS TO TRANSPORTATION NETWORK INTERDICTION 
GAMES

This paper is dedicated to the analysis of transportation network interdiction, which examines the mechanisms 
by which an adversary with limited resources can disable or degrade connections within a network, as well as 
the defender’s response in rerouting flows to maintain system efficiency.

The evolution of interdiction methods is presented–from classical bilevel optimization approaches employing 
mixed-integer programming, Benders decomposition, cutting-plane methods, and heuristics to contemporary 
algorithms that leverage large-scale data analysis.

A classification of machine-learning methods for interdiction is provided, namely:
1.	 Reinforcement learning, which involves training agents through interaction with a simulated environment.
2.	 Adversarial and multi-agent learning, which employs self-play and online no-regret algorithms to 

develop robust strategies.
3.	 Imitation learning and inverse reinforcement learning, which rely on analyzing demonstrations or 

actual adversary trajectories.
4.	 Evolutionary algorithms combined with neural approximators, which offer scalable solutions at the 

expense of strict theoretical guarantees.
Theoretical foundations of Kolmogorov–Arnold Networks (KANs) are revealed, showing how, based on 

the universal approximation theorem, they approximate multivariate functions via a sequence of learned 
univariate mappings. Initial applications of KANs in transportation tasks–such as traffic flow optimization and 
power-grid state estimation–are analyzed, and the potential for modeling defender responses using a compact, 
interpretable architecture is identified.

It is determined that, for further advancement in this field, the following key challenges must be addressed:
1.	 Embedding bilevel decision logic into differentiable models.
2.	 Handling graph-structured inputs without sacrificing approximation properties.
3.	 Generating representative, “adversarial” training datasets.
4.	 Developing rigorous evaluation protocols and determining performance bounds.
A research roadmap is proposed that integrates optimization and learning approaches, prioritizes 

reproducibility on both synthetic and real datasets, and seeks to balance computational efficiency with 
model transparency. This survey establishes a foundation for the development of effective and interpretable 
interdiction strategies in transportation and other critical infrastructure networks.

Key words: transportation networks, network interdiction, Kolmogorov-Arnold networks, neural network 
training, performance evaluation, comparative analysis, mathematical optimization.

Statement of the problem. Network interdic-
tion games model an attacker-defender scenario on 
a network, where one agent attempts to disrupt or 
block network routes while the other tries to main-
tain efficient connectivity. Formally, a network 
(e.g.,  a road network or supply chain) is given on 
which an operator (defender) seeks to perform an 
optimally efficient action, such as sending flow, 
finding the shortest path, or servicing demands. An 
interdictor (attacker) moves first by incapacitating or 
degrading some network elements (nodes or links) 

within a limited budget of attacks [1]. Then the 
operator routes flow or traffic in the damaged net-
work attempting to minimize the loss (e.g., finds the 
quickest remaining route, or maximizes the through-
put that can still be delivered). This sequential play 
defines a Stackelberg game: the attacker anticipates 
the defender’s best response when choosing what to 
attack [1]. Depending on the context, the defender’s 
“action” can be passive (simply the outcome of an 
optimization like shortest path) or active (e.g., allo-
cating defensive resources or fortifications before 
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the attack, leading to a tri-level game [1], although 
we focus on the bilevel case here).

These models have critical relevance in 
logistics, as they help identify weak links in supply 
chains and transportation networks and devise 
strategies to improve network resilience [2]. In a 
typical formulation (often a Stackelberg game), an 
interdictor (leader) with limited resources chooses a 
set of network arcs or nodes to disable or degrade. 
Then, an evader (follower) finds its optimal path 
through the remaining network [2]. The interdictor’s 
goal is to maximize the cost or length of the 
evader’s route (e.g., lengthening the shortest path) 
while the evader seeks to minimize it, producing a 
two-level optimization problem. Classic analysis 
usually assumes perfect rationality and complete 
information, but these assumptions are often 
unrealistic in practice [3]. Moreover, solving such 
interdiction problems is usually computationally 
hard: even restricted versions (like selecting k 
arcs to remove) are NP-hard, making exact solvers 
impractical on large networks [2]. These challenges 
have spurred research into AI agent training methods 
that learn effective interdiction strategies through 
simulations and theoretical models.

Analysis of recent research and publications. 
Several comprehensive surveys have been pub-
lished on transportation network interdiction, includ-
ing Smith and Song (2020), who review a broad 
range of bilevel optimization models and solution 
techniques; Brown et al. (2019), which focuses on 
mixed‐integer programming and decomposition 
methods; and Zhang and Li (2021), which examines 
machine‐learning–based heuristics. These works 
systematically cover reinforcement learning, adver-
sarial/multi‐agent frameworks, imitation learning, 
and evolutionary or heuristic approaches, yet none 
of them mention Kolmogorov–Arnold Networks 
(KANs) as a potential modeling paradigm. Conse-
quently, there is a gap in existing literature regard-
ing the application of KANs to network interdiction, 
despite their ability to approximate complex multi-
variate defender‐response functions via learned uni-
variate mappings.

Task statement. This survey aims to trace the 
evolution of transportation network interdiction 
methodologies – from classical bilevel optimization 
techniques to modern AI-driven approaches – and to 
identify open challenges hindering further progress.

The current study is focused on reinforcement 
learning, adversarial (multi-agent) learning, 
imitation learning, and other relevant methodologies. 
Specifically, the objectives are to:

•	 Categorize existing interdiction approaches, 
contrasting operations-research methods with 
machine-learning frameworks, and summarize their 
respective strengths and limitations.

•	 Highlight the theoretical foundations and 
initial applications of Kolmogorov – Arnold 
Networks (KANs) in related transportation domains.

•	 Identify critical research gaps, including 
embedding bilevel decision logic into differentiable 
models, handling graph-structured inputs 
without losing approximation power, generating 
representative adversarial training datasets, and 
establishing rigorous evaluation protocols.

Propose a research roadmap that integrates 
optimization and learning approaches, emphasizes 
reproducibility on both synthetic and real-world 
datasets, and balances computational efficiency with 
model interpretability.

Outline of the main material of the study. 
Formulation of the problem

A rigorous mathematical formulation for the 
network interdiction game is typically expressed 
as a Stackelberg (leader-follower) bilevel optimi-
zation problem [6].

Consider a transportation network modeled as 
a directed graph G = (V, E) where V is the set of 
nodes (vertices). E is the set of arcs (edges), with 
each arc ( )∈,i j E  having associated parameters 
(e.g., capacity, cost, or travel time).

An attacker aims to degrade the network by 
interdicting (attacking/removing or partially 
disabling) a subset of arcs, subject to resource or 
budgetary constraints. The defender subsequently 
routes traffic or flow optimally through the network 
to minimize operational costs or maximize efficiency 
given the interdicted network.

The attacker (leader) chooses binary 
interdiction decisions:

( ) ( )       
 


= 



1, ,

0,ij

if arc i j is interdicted disabled or degraded
x

otherwise

The defender (follower) chooses continuous 
routing decisions:

( )( )      ≥ 0 ,ijf flowon arc i j after interdiction

The attacker selects arcs to interdict to maximize 
damage to the defender. Formally, the attacker 
solves the following problem:

( )( ) *max ,
x

Z x f x

subject to interdiction budget constraints:

( )∈
≤∑

,

a
ij ij

i j E

c x B
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where:
1.	 ( )( ) *,Z x f x  is the damage (loss) function 

defined by the attacker (e.g., total increase in travel 
time or total flow reduction), dependent upon the 
defender’s optimal response ( )*f x .

2.	 a
ijc  is the cost of interdicting arc ( ),i j .

3.	 B  is the attacker’s budget (limited resources 
for attacks).

Follower’s Problem (Defender)
Given the interdicted arcs (decision x), the 

defender solves an inner-level optimization problem, 
typically to minimize their operational costs, or 
equivalently, to maintain optimal network efficiency:

( ) ( )∈* min ,
j

f x arg C f x

subject to network constraints: Flow conservation 
at each node { }  ∈ \ ,k V s t  (where s is source and t is 
sink):

( ) ( )
{ }  

∈ ∈

− = ∀ ∈∑ ∑
, ,

0, ,ik kj
i k E k j E

f f k V s t

Capacity constraints on arcs, adjusted for 
interdictions:

( ) ( ) ≤ ≤ − ∀ ∈0 1 , ,ij ij ijf c x i j E

where:
1.	 ( ),C f x  is the defender’s cost function, 

typically given by total transportation costs or total 
travel time.

2.	 ijc  is the original capacity of the arc ( ),i j  
before interdiction.

The complete bilevel Stackelberg interdiction 
game formulation is expressed as:

( )( )*max ,
x

Z x f x

subject to:

( )
{ } 

∈

≤ ∈∑
,

, 0,1a
ij ij ij

i j E

c x B x

and
( ) ( )∈* min ,

j
f x arg C f x

subject to:
1.	 Flow conservation:

( ) ( )
{ }  

∈ ∈

− = ∀ ∈∑ ∑
, ,

0, ,ik kj
i k E k j E

f f k V s t

2.	 Arc capacities (post-interdiction):

( ) ( ) ≤ ≤ − ∀ ∈0 1 , ,ij ij ijf c x i j E

Interpretation
Leader (Attacker): Moves first and strategically 

selects arcs to disrupt, considering how the follower 
will optimally respond.

Follower (Defender): Moves second, optimally 
redistributing traffic or flow on the network given 
the damage caused by the leader.

Transportation systems provide many practical 
cases of network interdiction games. Consider 
a highway network where an attacker aims to 
maximize congestion by disabling a few critical 
interchanges while the traffic authority reroutes 
vehicles to minimize total delay. This can be cast as 
an interdiction game in which the attacker removes 
network capacity and the defender solves a traffic 
assignment or flow minimization problem [7]. 
Similar models appear in the analysis of terrorist 
threats to transit systems, freight network resilience 
against disruptions, and smuggler interception on 
transportation corridors [3]. A common objective 
for the interdictor is to inflict maximum damage 
(e.g., maximize travel time or flow loss), while 
the defender’s aim is typically to minimize that 
damage – yielding a zero-sum or leader-follower 
optimization framework [7].

Solving network interdiction problems optimally 
is generally computationally hard. Even with 
moderate network sizes, the bilevel formulation 
becomes large and non-convex. Traditional methods 
reformulate or relax the problem into single-level 
models. For example, one can replace the defender’s 
linear program (like a max flow) with its dual and 
embed it into the attacker’s problem, resulting in a 
single-level but still combinatorial formulation  [8]. 
Exact algorithms often use cutting planes, branch-
and-bound, or Benders decomposition (row 
generation) to search the attack space efficiently [8]. 
Despite these advances, the curse of dimensionality 
remains: as networks grow or as the attacker’s 
budget increases, the number of possible attack 
combinations explodes. Smith and Song (2020) note 
that modern research is pushing into interdiction 
models with probabilistic and dynamic elements, 
which further increase complexity [6]. In such 
settings, exact solution methods can become 
prohibitively slow, and even heuristic or MILP 
solvers struggle to provide timely solutions [9]. 
This is problematic for transportation agencies that 
have to analyze worst-case disruption scenarios or 
identify vulnerabilities in large-scale networks (e.g., 
a national highway system).

Thus, exact solutions are challenging for large-
scale networks, motivating the development of 
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advanced approximate solution techniques [10] 
including potentially promising methods like 
Kolmogorov-Arnold Networks.

Publication Selection
The identification and curation of relevant 

literature constitute the initial phase of this 
survey  [4]. We combine an automated controlled 
snowball-sampling procedure [5] with manual 
screening and citation-network exploration to ensure 
both breadth and relevance.

Inclusion and Exclusion Criteria
We defined explicit inclusion and exclusion 

criteria for selecting publications to ensure a high-
quality and relevant literature base.

Inclusion Criteria: We focused on peer-reviewed 
research articles (including conference papers and 
journal articles) and credible systematic literature 
reviews published roughly in the last 10 years 
(2015–2025). We included studies explicitly 
addressing the application of AI (e.g., machine 
learning, deep learning, evolutionary algorithms, 
knowledge-based systems) to software testing or 
quality control. Also, we included older seminal 
works if they were highly cited and foundational to 
the field (to provide historical context or definitions). 
We limited sources to English-language publications 
from reputable venues in software engineering 
and AI. For tools or industry solutions, official 
documentation or whitepapers (software manuals) 
were considered if they provided technical details.

To assemble a focused yet comprehensive 
body of work, we established explicit criteria. 
We included peer-reviewed journal articles and 
conference papers–published between 2010 and 
2025–that directly address transportation network 
interdiction or closely related topics (e.g., logistics, 
supply-chain resilience). These works encompass 
both classical optimization techniques, such as 
bilevel programming, mixed-integer programming, 
and decomposition algorithms, and modern 
AI methods, including reinforcement learning, 
graph neural networks, and Kolmogorov–Arnold 
Networks. Additionally, we considered highly cited, 
pre-2010 publications that introduced foundational 
concepts in interdiction game theory or network 
security. All included studies are in English and 
originate from recognized operations-research 
and AI venues. Conversely, we excluded papers 
that discuss network flow or routing without an 
interdiction component, focus solely on defender-
only optimization, or address AI system testing 
rather than using AI for interdiction. Non-peer-
reviewed sources (e.g., blogs or opinion pieces) 

were omitted unless they provided critical 
methodological details, and purely theoretical works 
without computational or empirical evaluation were 
likewise set aside.

Publication Selection Method
Our selection unfolded in three stages. First, 

we performed keyword searches–using terms 
such as “transportation network interdiction”, 
“bilevel network games”, and “network interdiction 
learning” – across Scopus, Web of Science, and 
Google Scholar. An initial screening of titles and 
abstracts yielded approximately fifty candidate 
papers. Second, we applied the controlled 
snowball-sampling method of Dobrovolskyi and 
Keberle [5], tracing both forward and backward 
citations to capture seminal works while avoiding 
terminological drift; this refined our pool to about 
thirty‐five publications. Finally, we obtained 
full texts (where available) and conducted a 
detailed manual review, verifying each against 
our inclusion/ exclusion criteria, extracting key 
methodological details–such as network models, 
evaluation metrics, and principal findings–and 
discarding those that failed to meet our standards.

Analysis of collected publications
Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks are a novel class 

of neural networks grounded in a 1957 theorem by 
A.N. Kolmogorov (extended by V. Arnold), which 
states that any continuous function of several 
variables can be represented as a finite composition 
of one-dimensional functions [11]. Traditional 
neural networks achieve universal approximation 
by layering fixed non-linear activations; in 
contrast, KANs implement the Kolmogorov-
Arnold construction directly. Each hidden “layer” 
in a KAN applies learnable transformations on 
each input dimension rather than a fixed activation 
across all neurons [12]. For example, instead of 
a weight ijw  multiplying input jx  KAN would 
apply a learned spline function ( )ij jf x  input 
connection. These learned univariate functions serve 
as customized activations that can adapt their shape 
to the data. As a result, KANs can capture complex 
nonlinear relationships with a compact architecture.

One immediate advantage of KANs is 
flexibility. The network can mold its activation 
functions to fit intricate patterns, which is 
beneficial for highly nonlinear domains like 
traffic flow or infrastructure failure cascades. 
Another advantage is potential interpretability: 
the  learned activation functions on each edge can 
be inspected and, in some cases, have been shown 
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to correlate with meaningful physical relationships 
[hollosi2024detection]. Indeed, KANs have been 
used to rediscover mathematical or physical laws 
from data, highlighting their ability to reveal 
the structure behind the patterns they learn [12]. 
Furthermore, variants like Convolutional KANs 
integrate spline-based activations into CNN 
architectures to reduce parameter counts while 
maintaining accuracy [12]. In image classification 
tasks (e.g. MNIST), such convolutional KANs 
matched traditional CNN performance using 
fewer resources [12]. This efficiency is attributed 
to KAN’s capacity to approximate functions 
with fewer neurons by using richer neuron-
wise activations. KANs are particularly effective 
at modeling high-dimensional datasets with 
intricate interdependencies. For example, in 
hyperspectral image classification and time-series 
forecasting, they have achieved leading results by 
accurately representing both spatial and temporal 
correlations [14]. All these traits suggest that KANs 
could be well-suited to model the complexity of 
transportation networks under attack, where system 
behavior (e.g., total travel time, flow distribution) 
is a highly nonlinear function of which components 
are disrupted.

However, KANs are not universally superior 
to conventional networks in every scenario. 
A  comprehensive empirical study by Bodner et  al. 
(2024) found that when controlling for model size 
and FLOPs, standard MLPs still outperformed 
KANs on most machine learning benchmarks 
except those involving symbolic function 
representation  [13]. These findings underline that 
while KANs offer a powerful representational 
framework, they also introduce new challenges.

Applying Kolmogorov-Arnold networks to 
network interdiction is a cutting-edge idea that 
has only begun to be explored. Because KANs 
themselves have gained attention mainly in the past 
few years, there are not that many direct studies on 
using KANs for interdiction games. Recent advances 
along two parallel lines of inquiry provide valuable 
guidance. The first involves employing machine-
learning methods–including neural networks–to 
augment or even replace conventional solvers in 
network interdiction tasks. The second focuses 
on the successful deployment of KAN models 
in a variety of transportation-focused problems. 
Together, these developments imply that KANs may 
be particularly well-suited to address the challenges 
posed by interdiction games in transportation 
networks.

KANs in Transportation and Network 
Optimization

Initial deployments of KAN architectures 
in transportation applications demonstrate their 
effectiveness in handling complex network 
challenges, suggesting they may be well suited for 
interdiction scenarios. A very recent example is the 
use of KANs for traffic flow optimization. Zhang 
et al. (2025) proposed a hybrid model combining 
KANs with graph convolutional networks 
(TrafficKAN-GCN) to optimize urban traffic signal 
timings [9]. By embedding a KAN into a graph-
based architecture, they aimed to capture complex 
nonlinear flow responses to control measures. 
While this work is at the preprint stage, it reflects a 
broader trend of integrating KANs into graph and 
network problems. Indeed, KANs have also been 
tested in power systems for state estimation, where 
interpretability and accuracy are crucial [15]. In all 
these cases, KANs provided an advantage when the 
problem involved learning a complicated mapping 
(e.g., from sensor readings or control actions to 
outcomes) that classical models struggled with.

Bridging the Fronts: The convergence of 
these research fronts – ML-assisted interdiction 
and KAN-enabled transport models – points to a 
strong opportunity at their intersection. We have 
seen that neural approaches can handle large-
scale interdiction problems faster than traditional 
methods [10], and that KANs can capture complex 
system behaviors in transportation contexts with 
high fidelity [12]. Therefore, it is anticipated that 
applying Kolmogorov-Arnold networks to network 
interdiction games in transportation will bring 
significant advances. In the next section, we identify 
these anticipated benefits in detail, discussing 
how KAN’s characteristics align with the needs 
of interdiction problems. We then analyze the 
challenges that must be addressed to realize these 
benefits.

AI-Based Approaches to Network Interdiction
Methods from machine learning and artificial 

intelligence have been employed to overcome the 
scalability and uncertainty challenges of classical 
interdiction solvers. In the last decade, the literature 
on AI-driven interdiction can be grouped into four 
main categories:

Reinforcement Learning
Reinforcement learning frames interdiction as a 

sequential decision-making process in a simulated 
environment [2]. Recent studies model the shortest-
path interdiction problem as a Markov decision 
process and train deep RL agents–often using 
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pointer networks–to select edges to disable. These 
agents learn policies that maximize a reward signal 
(e.g., the evader’s path length), achieving near-
optimal interdiction sets on large instances where 
mixed-integer solvers become intractable [16].

Adversarial and Multi-Agent Learning
Adversarial learning approaches explicitly 

account for the strategic interaction between 
interdictor and evader. Online no-regret algorithms 
update the defender’s strategy against adaptive 
opponents, with provable sublinear regret bounds 
even when the evader adjusts tactics over time. Self-
play RL schemes co-train attacker and defender 
agents, driving both toward equilibrium policies that 
generalize across network topologies [17].

Imitation and Inverse Reinforcement Learning
When demonstrations of expert or observed 

behavior are available, imitation learning and 
inverse RL can infer an opponent model. In one 
dynamic local interdiction study, human-generated 
evader trajectories were used to learn a reward 
function via IRL; this model then informed the 
interdictor’s policy, which was further refined online 
through RL, yielding higher interdiction accuracy 
than [18].

Evolutionary and Heuristic Methods with 
Neural Approximators

Genetic algorithms and other population-based 
heuristics have long been applied to interdiction, 
identifying near-optimal link-removal sets on large 
networks. More recently, graph neural networks 
have been trained on MILP-derived solutions–
termed “Network Interdiction Goes Neural” – to 
predict effective interdiction decisions in real time, 
outperforming greedy heuristics and matching solver 
quality at a fraction of the runtime [9].

By consolidating these paradigms into a single 
overview, we highlight how AI techniques–ranging 
from trial-and-error learning to expert modeling 
and hybrid heuristics–provide scalable, adaptable 
alternatives to exact optimization in network 
interdiction contexts.

Gaps and challenges
Integrating Kolmogorov-Arnold networks into 

network interdiction games is at its very beginning 
stage. It raises unique issues at the intersection of 
game theory, graph data, and deep learning.

•	  This survey has traced the evolution of trans-
portation network interdiction–from its origins in 
bilevel optimization and mixed-integer program-
ming to the latest trends in data-driven and learning-
based methods. Classical solution techniques such 
as Benders decomposition, cutting-plane algorithms, 

and heuristic search continue to provide rigorous 
foundations and provable guarantees, yet they often 
struggle with scalability on large, realistic networks. 
In parallel, machine-learning paradigms–including 
reinforcement learning, adversarial and multi-agent 
frameworks, imitation and inverse reinforcement 
learning, as well as evolutionary algorithms aug-
mented by neural approximators–have demonstrated 
remarkable flexibility and speed, albeit sometimes at 
the cost of formal optimality bounds.

A central theme of this review is the promise 
of Kolmogorov–Arnold Networks (KANs). 
By  approximating multivariate defender-response 
functions via learned univariate mappings, KANs 
offer a compact architecture with the potential for 
greater interpretability than conventional deep-
learning models. Early applications in traffic flow 
optimization and power-grid state estimation suggest 
that KANs can capture complex nonlinear behaviors 
in networked systems. Yet the direct application of 
KANs to interdiction games remains nascent.

From our analysis, four key research challenges 
emerge:

1.	 Bilevel Logic Embedding
2.	 Translating the sequential attacker–defender 

structure into a differentiable learning paradigm, 
without losing theoretical rigor.

3.	 Graph-Structured Input Handling
4.	 Extending KAN theory to accommodate 

networks’ combinatorial topology, while preserving 
universal approximation guarantees.

5.	 Adversarial and Diverse Data Generation
6.	 Designing training datasets that reflect 

realistic, stochastic interdiction scenarios and 
adversarial variations.

7.	 Evaluation Protocols and Performance 
Guarantees

8.	 Developing standardized benchmarks, 
reproducible evaluation procedures, and methods to 
quantify approximation gaps or regret.

Addressing these challenges will require 
concerted efforts across optimization theory, graph-
based learning, and robust machine-learning 
methodology. We foresee that hybrid frameworks–
combining KAN-driven approximators with local 
optimization refinements–could deliver both high 
performance and verifiable guarantees. Moreover, 
establishing open datasets and shared evaluation 
platforms will be critical to drive reproducible 
progress.

In summary, while classical and modern AI-based 
methods each contribute valuable strengths, 
integrating KANs into transportation interdiction 
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promises a new balance between computational 
efficiency, modeling fidelity, and interpretability. As 
research advances along the identified directions, 
we expect to see the emergence of more transparent, 

scalable, and reliable interdiction strategies 
applicable not only to road and logistics networks, 
but also to other critical infrastructures such as 
power grids and communication systems.
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Пасічник В.В., Добровольський Г.А. ЗАСТОСУВАННЯ МЕРЕЖ  
КОЛМОГОРОВА–АРНОЛЬДА ДО ІГОР ІНТЕРДИЦІЇ ТРАНСПОРТНИХ МЕРЕЖ

Стаття присвячена аналізу інтердиції транспортних мереж, що передбачає дослідження 
механізмів, за допомогою яких противник із обмеженими ресурсами може виводити з ладу або 
послаблювати зв’язки в мережі, а також реакцію захисника, який перенаправляє потоки для 
збереження ефективності системи.

У статті розкрито еволюцію методів інтердиції – від класичних бівертикальних оптимізаційних 
підходів із застосуванням змішаного цілочисельного програмування, декомпозиції Бендерса, методів 
розрізів та евристик до сучасних алгоритмів, що спираються на аналіз великих обсягів даних.

Розкрито класифікацію методів машинного навчання для інтердиції, а саме:
1.	 Навчання з підкріпленням, яке навчає агентів через взаємодію з імітованим середовищем;
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2.	 Протидійне та багато-агентне навчання, що використовує навчання через гру з самим собою 
та онлайн-алгоритми без жалю для формування стабільних стратегій;

3.	 Імітаційне навчання та зворотне навчання з підкріпленням, які вивчають поведінку противника 
на основі демонстрацій або реальних траєкторій;

4.	 Еволюційні алгоритми у поєднанні з нейронними апроксиматорами, що забезпечують 
масштабованість рішень за рахунок відсутності суворих теоретичних гарантій.

Розкрито теоретичні засади мереж Колмогорова–Арнольда (KAN), які на основі універсальної 
теореми апроксимують багатовимірні функції через послідовність вивчених одновимірних 
відображень, та проаналізовано їхні початкові застосування в транспортних завданнях (зокрема 
оптимізація дорожнього руху та оцінка стану енергомереж). Визначено можливості використання 
KAN для моделювання реакції захисника в компактній та інтерпретованій архітектурі

З’ясовано, що для подальшого розвитку даної галузі необхідно вирішити такі ключові виклики:
1.	 Вбудування бівертикальної логіки в диференційовані моделі;
2.	 Обробка граф-структурованих вхідних даних без втрати апроксимаційних властивостей;
3.	 Генерація репрезентативних, «протидійних» наборів даних для навчання;
4.	 Розробка строгих протоколів оцінки та визначення меж продуктивності.
Запропоновано дослідницьку дорожню карту, що поєднує оптимізаційні й навчальні підходи, надає 

пріоритет відтворюваності результатів на синтетичних і реальних даних та прагне збалансувати 
обчислювальну ефективність із прозорістю моделей. Цей огляд створює основу для розробки ефективних 
і зрозумілих стратегій інтердиції в транспортних та інших критично важливих інфраструктурних 
мережах.

Ключові слова: транспортні мережі, інтердикція мереж, мережі Колмогорова–Арнольда, навчання 
нейронних мереж, оцінка ефективності, порівняльний аналіз, математична оптимізація.


